On the equiconvergence of Fourier series and Fourier integrals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

Bernstein Equiconvergence and Fej Er Type Theorems for General Rational Fourier Series Bernstein Equiconvergence and Fej Er Type Theorems for General Rational Fourier Series

Let w() be a positive weight function on the interval ;) and associate the positive deenite inner product on the unit circle of the complex plane by hf; gi w = 1 2 R f(e ii)g(e ii)w()d. For a sequence of points f k g 1 k=1 included in a compact subset of the open unit disk, we consider the orthogonal rational functions (ORF) f k g 1 k=0 that are obtained by orthogonalization of the sequence f1;...

متن کامل

Errors and ambiguity in transition from Fourier series to Fourier integrals

Transition from Fourier series to Fourier integrals is considered and error introduced by ordinary substitution of integration for summing is estimated. Ambiguity caused by transition from discrete function to continuous one is examined and conditions under which this ambiguity does not arise are suggested.

متن کامل

Rapidly Growing Fourier Integrals

1. THE RIEMANN–LEBESGUE LEMMA. In its usual form, the Riemann– Lebesgue Lemma reads as follows: If f ∈ L1 and f̂ (s) = ∫∞ −∞ eisx f (x) dx is its Fourier transform, then f̂ (s) exists and is finite for each s ∈ R and f̂ (s) → 0 as |s| → ∞ (s ∈ R). This result encompasses Fourier sine and cosine transforms as well as Fourier series coefficients for functions periodic on finite intervals. When the i...

متن کامل

Notes on Fourier Series

A function or a real variable f is said to be periodic with period P if f(x+ P ) = f(x) holds for all x. Hence, if we know the values of f on an interval of length P , we know its values everywhere. If f is a function defined on an interval [a, b), we can extend f to a function defined for all x which is periodic of period b− a. We simply define f(x) to be f(x+ n(b− a)), where n is the integer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1949

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1949-09356-4